If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2r^2-9=0
a = 2; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·2·(-9)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*2}=\frac{0-6\sqrt{2}}{4} =-\frac{6\sqrt{2}}{4} =-\frac{3\sqrt{2}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*2}=\frac{0+6\sqrt{2}}{4} =\frac{6\sqrt{2}}{4} =\frac{3\sqrt{2}}{2} $
| -8+7x=-9x+20 | | 4+2m-1=9m+6-4m | | 8a=35-1a | | 9-3(n-5=30 | | -167=x+3(3+7x) | | 5y2=0.7y×0.45 | | 7w=5×14 | | (9x+3)=(11x-21) | | 1+2(x+5)=-3x-14 | | -4(5+7a)=-188 | | 3g-2g=16 | | 10+x/3=40 | | 6(x-4)-1=2x+4(-5+x) | | 4^(5x-1)=18 | | 24=6-3n | | 3n+4-1=2n+3 | | 5(w+-2)=0 | | (X-4)2+x=16 | | 3m-6m=-9 | | 3(2x-5)-2(x-4)=3x+1 | | 15=9-2r | | 5(w-2)=0 | | -4(5k-5)=-100 | | .8.99d-234=234d+90 | | X+10=2x+20=2x | | (X-4)•2+x=16 | | 15-5+10+n=50 | | 2n-8(1-3n)=-112 | | 6u+18-19u=-12 | | 5x-24=15 | | 2-3x+2(x-6)=8x-2+3x | | 2(-9+x)=-14 |